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SUMMARY

An unstructured non-nested multigrid method is presented for e�cient simulation of unsteady incom-
pressible Navier–Stokes �ows. The Navier–Stokes solver is based on the arti�cial compressibility ap-
proach and a higher-order characteristics-based �nite-volume scheme on unstructured grids. Unsteady
�ow is calculated with an implicit dual time stepping scheme. For e�cient computation of unsteady
viscous �ows over complex geometries, an unstructured multigrid method is developed to speed up the
convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the
steady and unsteady incompressible viscous �ows over a circular cylinder for validation and perfor-
mance evaluation purposes. It is found that the multigrid method with three levels of grids results in a
75% reduction in CPU time for the steady �ow calculation and 55% reduction for the unsteady �ow
calculation, compared with its single grid counterparts. The results obtained are compared with numer-
ical solutions obtained by other researchers as well as experimental measurements wherever available
and good agreements are obtained. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, many advanced Computational Fluid Dynamics (CFD) methods have been
developed for accurate and e�cient simulation of �uid �ows over complex geometries. The
steady-state numerical solution of a non-linear system of partial-di�erential equations, such
as the Navier–Stokes equations, is often found through iterative methods. Improving the rate
of convergence of such iterative methods is crucial for practical applications of CFD sim-
ulation, which would result in more cost-e�ective design and analysis. Multigrid techniques
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have been demonstrated as an e�cient means for obtaining steady-state numerical solutions to
both the compressible Euler and Navier–Stokes equations on unstructured meshes in two and
three dimensions [1–4], which �nd their applications mainly in aerospace engineering. Recent
years also saw an increasing interest in applying the above methods to steady incompressible
�ow simulation [5–8] through the use of the arti�cial compressibility method proposed by
Chorin [9], a �eld which has been traditionally dominated by the pressure-based method such
the SIMPLE-type methods and the projection method. For most real life �uid �ow problems,
unsteady �ow is the rule and steady �ow is the exception. However, it is still very time con-
suming to simulate unsteady �ows, especially unsteady incompressible viscous �ows due to
their elliptic nature, which means that global iterations are required to achieve the divergence
free condition. To simulate unsteady incompressible �ows with the arti�cial compressibility
method, a dual time stepping scheme is necessary. While physical time integration can usually
be obtained with a three-point second-order implicit scheme, time stepping in pseudo time
can be explicit [10–12] or implicit [8, 13, 14]. Liu et al. [11] have developed a multigrid
method using the dual time stepping scheme on structured grids for the computation of un-
steady incompressible viscous �ows while Lin [12] has attempted the unstructured multigrid
method for calculating unsteady inviscid �ows. In this study, we aim to extend the high-order
characteristics-based �nite-volume scheme for unstructured grids in Reference [15] to simu-
late unsteady incompressible viscous �ows by introducing an unstructured multigrid method.
A multistage Runge–Kutta time-stepping scheme in pseudo time is adopted and coupled with
the unstructured multigrid method. The ultimate aim of this study is to use this combination
to produce an highly e�cient and �exible method for simulating unsteady �ows with complex
geometries.

2. MATHEMATICAL FORMULATION

The two-dimensional Navier–Stokes equations for incompressible unsteady �ows, modi�ed
by the arti�cial compressibility method, can be written in vector form with dimensionless
parameters:
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where W is the �ow �eld variable vector, Fc and Fv are the convective and viscous �ux
vectors, respectively, � being a constant called arti�cial compressibility. K is the unit matrix,
except that the �rst element is zero and C is a preconditioning matrix.
Equation (1) can be recast in an integral form as follows:
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Equation (2) is equivalent to the following equation:
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Once the arti�cial steady state is reached, those derivative terms with respect to � become
zero and the above equation reduces to the following equation:
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Equation (3) shows that the preconditioning matrix does not a�ect the solution and the original
unsteady incompressible Navier–Stokes equations are fully recovered.

3. NUMERICAL METHODS

A new unstructured-grid high-order characteristics-based upwind �nite-volume algorithm [17]
is used to solve the governing equations, the outline of the method is described in the following
sections.

3.1. Finite volume formulation

The 2D equations in (2) are discretized on an unstructured grid and a cell-vertex scheme is
adopted here, i.e. all computed variables in vector W are stored at vertices of the triangular
cells. For every vertex, as shown in Figure 1, a control volume is constructed by joining the
centres of the cells to the centres of the edges using the median dual of the triangular grid.

Figure 1. Construction of control volume for node P.
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Spatial discretization is performed by using the integral form of the conservation equations
over the control volume surrounding node or vertex P, as shown in the following equation:
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In order to introduce the upwind scheme using an edge-based procedure, the convective term
is transformed into a summation as in the following equation:∫∫

Scv
∇ · Fc dS=

∮
Lcv
Fc · n dl=

nbseg∑
k=1
[(Fc)kij · n�lk] (5)

where nbseg is the number of the edges connected to node P, (Fc)kij is the convection �ux
through the part of control volume boundary (similar to 1−Cij−2 in Figure 1). The length of
the boundary is �lk and its e�ective outward normal unit vector is n. Therefore, all the �uxes
are calculated for the edges and then collected at the two ends of each edge for updating of
�ow variables using the time-marching scheme.
The viscous term is calculated using a cell-based method, which is shown in the following

equation: ∫∫
Scv

∇ · Fv dS=
∮
Lcv
Fv · dl =

ncell∑
i=1
(Fv ·�lc)i= 12

ncell∑
i=1
(Fv ·�lp)i (6)

where �lci is the part of control volume boundary in cell Ci, and �lpi is the edge vector
of the cell edge opposite to node P of the triangle under consideration. Here the (Fv)i is
calculated at the centre of the triangular cell, which can be obtained by using the Green’s
Theorem and the variables at the three vertices of the triangle. Here ncell is the number of
cells surrounding node P. The viscous �ux in Equation (6) is actually calculated in a cell-by-
cell manners and then collected at the nodes of the cells for the calculation of the residuals
at all the nodes.

3.2. Upwind-biased interpolation

Here an edge-based method for calculating the total inviscid �ux is adopted by calculating
and storing the �ux integrals based on the associated edges. The left and right state vectors
WL and WR on both sides of a control volume surface associated an edge ij can be evaluated
using an upwind-biased interpolation scheme along the edge, which are shown as follows:
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Therefore, substituting the above equations into Equations (7a) and (7b), the �nal formulas
based on the upwind-biased interpolation scheme are obtained:

WL =Wi +
1
2
[(1− �)ij · ∇Wi + ��+

i ] (8a)

WR =Wj − 1
2
[(1− �)ij · ∇Wj + ��−

j ] (8b)

where � is set to 1
3 , which corresponds to a nominally third-order accuracy. The two values

will then be used in the characteristics-based method, which will be introduced in the following
section.

3.3. The upwind characteristics-based method
Similar to the approach in Reference [16] for compressible �ow and that in Reference [17]
for incompressible �ow on structured grids, a high-order characteristics-based scheme for
incompressible �ow and heat transfer on arbitrary unstructured grids has been developed in
Reference [15]. A 2D version of this is brie�y shown below. Suppose that � is a new co-
ordinate outward normal to the boundary of a control volume that surrounds a particular
vertex. In order to extend the method of characteristics to the unstructured grid solver, it
is assumed that �ow in � direction is approximately one-dimensional. In the � − � space as
shown in Figure 2, �ow variable W at pseudo time level m + 1 can be calculated along a
characteristics k using a Taylor series expansion and the initial value at pseudo time level
m(Wk),

W=Wk +W�����+W��� (9)

and

W�=
W −Wk

��
−W��� (10)

A wave speed �k is introduced

��= �k
√
�xi�xi

Figure 2. �-� co-ordinate.
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and the unit normal vector components are

nxj =
�xj√
�xi�xi

The �ow parameters at (m+1) pseudo time level are then calculated using the characteristics-
based method along the three characteristics:

u=fnx + u0n2y − v0nxny (11)

v=fny + v0n2x − u0nynx (12)

p=p1 − �1[(u− u1)nx + (v− v1)ny] (13)

where

f=
1
2C
[p1 − p2 + nx(�1u1 − �2u2) + ny(�1v1 − �2v2)]

C=
√
(�0)2 + �; �0 = unx + vny; �1 = �0 + C; �2 = �0 − C

Flow quantities at m + 1 pseudo time level obtained from the above equations on the char-
acteristics are then used to calculate convection �uxes at the control volume interface. While
those on di�erent characteristics at m time level are approximately evaluated by an upwind
scheme using the signs of the characteristics as suggested in Reference [17].

Wj =
1
2
[(1 + sign(�j))WL + (1− sign(�j))WR] (14)

where WL and WR are obtained by the high-order upwind-biased interpolation as introduced
in the previous section.

3.4. Dual time-stepping algorithm

Finally, for a given node P, the spatially discretized equations form a system of coupled
ordinary di�erential equations, which can be reformulated as
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2
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}

=−R(WP) (15)

where R(WP) represents the residual which includes the contributions of the convective and
di�usive �uxes and �Scv is the control volume of node P.
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An implicit scheme is adopted to approximate Equation (15) in physical time and the
semi-discrete equations are
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(�Sn+1cv W

n+1
p )= − R(Wn+1

P ) (16)

The superscript (n + 1) denotes the physical time level (n + 1)�t and all the variables are
evaluated at this time level. The time dependent term in Equation (16) can be discretized by
a three-point second-order di�erence scheme, thus it becomes
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p ) (17)

where R̃(Wn+1
p ) is the new modi�ed residual which contains both the time derivative and

�ux vectors. The advantage of the above implicit scheme is that the physical time step size
is not restricted by numerical stability, but only by numerical accuracy. This is especially
useful in unsteady �ow simulation. The derivative with respect to a �ctitious pseudo time �
is discretized as

�Scv
Wn+1; m+1
p −Wn+1; m

p

��
= R̃(Wn+1; m

p ) (18)

whose solution is sought by marching to a pseudo steady state in �. Here m and (m + 1)
denote the initial and �nal pseudo time levels. Once the arti�cial steady state is reached, the
derivative of Wp with respect to � becomes zero, and the solution will satisfy R̃(Wn+1

p )=0.
Hence, the original unsteady Navier–Stokes equations are fully recovered. Therefore, instead
of solving each time step in the physical time domain (t), the problem is transformed into
a sequence of steady-state computations in the arti�cial time domain (�). Equation (18) is
integrated in pseudo time by the �ve-stage Runge–Kutta time stepping scheme.

4. ACCELERATION TECHNIQUES

In this work, time-dependent calculations require the convergence of the Navier–Stokes equa-
tions to the steady state in pseudo time for each real time step. The methods used to ac-
celerate convergence to steady state in pseudo time are local time stepping, implicit residual
smoothing and multigrid. Since these convergence acceleration techniques are only used to
accelerate convergence in pseudo time, therefore they will not directly a�ect the accuracy
in real time. In the dual time-stepping algorithm, global time stepping is used to advance
the solution in real or physical time whereas local time stepping is used to advance the
solution in pseudo time. In this work, the large variation in grid size in the unstructured
mesh will restrict the time step used and the smallest control volume dictates the maximum
time step. In order to overcome the above problems, each control volume can be advanced
in pseudo time by its own maximum local time step, which greatly enhances the conver-
gence rate. The local time step size can be estimated via the Courant–Friedrichs–Lewy (CFL)
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stability condition

��=CFL · �l
|U |+ c (19)

where �l is the length scale associated with a node under consideration. Normally, it is taken
as the smallest height of all the cells sharing the node. For global time stepping, �l is taken
as the smallest value of all the nodes in the domain. And c is the speed of sound. Another
condition that limits the time step in � is ��6 2

3 �t.

4.1. Implicit residual smoothing

In order to speed up the convergence rate, an implicit residual smoothing scheme developed
for unstructured grids [15] is employed. The idea behind this is to replace the residual at
one point of the �ow �eld with a smoothed or weighted average of the residuals at the
neighbouring points. The averaged residuals are calculated implicitly in order to increase the
maximum CFL number, thus increasing the convergence rate. Normally this procedure allows
the CFL number to be increased by a factor of 2 or 3. The smoothing equation for a vertex
k can be expressed as follows:

�Rk =Rk + �∇2 �Rk (20)

where R is the original residual, �R is smoothed residual and � is the smoothing coe�cient,
which can be de�ned as,

�= max

{
1
4

[(
CFL
CFL∗

)2
− 1
]
; 0

}
(21)

where CFL∗ is the maximum CFL number of the basic scheme. The solution to the above
equations can be obtained on an unstructured grid by using Jacobi iterative method as follows,

�R(m)k =R(0)k + �
numnod(k)∑

i=1
[ �R(m)i − �R(m)k ]

i.e.

�R(m)k =
R(0)k + �

numnod(k)∑
i=1 �R

(m−1; m)
i

1 + � · numnod(k) (22)

where numnod(k) is the number of neighbouring nodes of vertex k.

4.2. Multigrid method

The multigrid method was originally developed for elliptic equations by Fedorenko [18] and
the full potential of the multigrid approach was demonstrated by Brandt [19]. Later, Jameson
et al. [20, 21] applied the multigrid method to the solution of the Euler equations for com-
pressible �ows. The philosophy of the multigrid method is to carry out early iterations on a
�ne grid and then progressively transfer these �ow �eld variables and residuals to a series
of coarser grids. On the coarser grids, the low frequency errors become high frequency ones
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Figure 3. V- and W-cycle for three grid levels. © denotes �ow �eld computation on a particular level
and • denotes interpolation of corrections of �ow �eld variables.

and they can be easily eliminated by a time stepping scheme. The �ow is then solved on the
coarser grids and the corrections are then interpolated back to the �ne grid. The process is
repeated over a su�cient number of times until satisfactory convergence on the �ne grid is
achieved.
For unstructured meshes, there are two approaches to generating the multi-level coarse

grids, one being the agglomeration method which agglomerates the �ne mesh cells or control
volumes [1–3], and the other being the non-nested mesh method using independently generated
non-nested (or overset) coarse meshes [4, 7]. In this study the latter approach is adopted for
ease of implementation. Two di�erent cycle strategies have been investigated in the present
work, which are V- and W-cycles. Figure 3 depicts the di�erence between the two strategies.
The solution on the coarse grid (h+1) is initialized by transferring the �ow �eld variables

from the �ne grid (h) using the transfer operator Th+1h ,

W(0)
h+1 =T

h+1
h Wh (23)

where W(0)
h+1 is the initial values transferred from the �ne grid and Wh is the solution from

the �ne grid. In order to drive the coarser grid solution using the �ne grid residual, a forcing
function is calculated at the �rst stage of the Runge–Kutta scheme and subsequently, this
forcing term is added to the residual on the coarse grid. The forcing function on the coarse
grid is

Ph+1 =Qh+1h R(Wh)− R(W(0)
h+1) (24)

where Qh+1h is the residual transfer operator based on the weighted average of the values of the
�ne nodes. After calculating the variables on the coarsest grid, the corrections are evaluated
and interpolated back to the �ne grid. The correction is the di�erence between the newly
computed value on the coarse grid, W+

h+1, and the initial value that was transferred from the
�ner grid, W(0)

h+1, and this correction is transferred to the �ne grid and added to the solution
on that grid, i.e.

W+
h =Wh + I hh+1(W

+
h+1 −W(0)

h+1) (25)

where I hh+1 is an interpolation operator from the coarse grid to the �ne grid and W+
h is the

updated solution. In order to improve the e�ciency for the simulation of viscous �ows, the
viscous terms are only evaluated on the �ne grid and not evaluated at the coarser grids. Since
the coarser grids are only used to cancel the dominating low frequency errors, this treatment
does not a�ect the accuracy of the solution. The upwind-biased interpolation scheme is set
to �rst-order at the coarser levels where the left-right states of Equations (8a) and (8b) are
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Figure 4. Zoning of �ow �eld domain.

taken as the values of the two nodes of the edge to calculate the �ux associated with the
edge.

4.2.1. Zoning of �ow �eld domain. In order to reduce pre-processing time, the �ow �eld
domain is decomposed into a number of square zones, in which searching for a particular
node is only done within the related square zones, instead of searching the whole �ow �eld.
Figure 4 shows a �ow �eld domain being decomposed into 4× 4 zones. The pre-processing
work in term of CPU time can be reduced according to the following equation with the
assumption of having the same number of nodes in each zone:

Total pre-processing work (CPU Time)=
Number of nodes

NZ
(26)

where NZ represents the number of zones created in the �ow domain.
The idea of this algorithm is that if any node of a triangular cell is mapped onto a particular

zone as shown in Figure 5(a), then this cell is considered mapped to this zone. This algorithm
will yield a negative mapping when, for example, zone 11 of Figure 5(a) will not be con-
sidered to contain this cell, which is not true. Another negative mapping encountered by this
algorithm is that the area of the zones may be smaller than the area of the largest element as
shown in Figure 5(b). Both of the above-mentioned problems will directly a�ect the accuracy
of the �ow solution. In order to eliminate the negative mapping, the corner co-ordinates of
the zone are also used to test whether a cell is mapped to the zone. The algorithm used to
test for this mapping is depicted in Section 4.2.2. If the corner point of the zone is found to
be within the cell, then this triangular cell is also considered to be mapped to this zone.

4.2.2. Inter-connectivity relationship between meshes. Before the �ow �eld variables and
residuals are transferred from the �ne grid to the coarse grid or the corrections are interpolated
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Figure 5. (a) Negative mapping; and (b) area of the zones smaller than the largest element.

Figure 6. (a) Node falls within a cell using dot product; and (b) node does not fall within a cell.

from the coarse grid back to the �ne grid, it is necessary to determine in which coarse cell
each �ne node is located and vice versa.
The algorithm for inter-connectivity relationship between meshes is based on the concept

of dot product of two vectors: the unit normal vector oriented inward from an edge, n, and
the vector p which points from the centre of the edge to a node under consideration. The dot
product of these two vectors, (pn)nedg, for the three edges is shown as follows:

(pn)nedg = {p} · {n}= {px py} ·
{
nx

ny

}
=(pxnx + pyny)nedg; nedg=1–3 (27)

where the superscript nedg is the edge number of the cell.
With reference to Figure 6(a), the dot product of these two vectors must be positive for all

the three edges if the node falls within the cell. If one of the dot product of these two vectors
is less than zero, then the node being tested is not within the cell, as depicted in Figure 6(b).
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Figure 7. (a) Fine node within the coarse boundary edge; (b) di�erent sign computed between
(pv)1 and (pv)2; (c) node belonging to the neighbouring edge (i.e. (pv)1¡0 and (pv)2¡0); and

(d) projected lengths for the transfer operator algorithms.

The following equation shows the criteria for the node to be within the cell:

{(pn)1 :and: (pn)2 :and: (pn)3}¿0 (28)

In order to reduce the pre-processing CPU time further more, those nodes that fall within a
particular cell are marked as 1 and they will not be tested for the next cell in the same or
next zone.
Basically, the search for nodes within the boundary edges will continue after the search for

nodes within the cells are performed if the user speci�es that the boundary is curved. Two
criteria are used to determine if a node is within the boundary edge. The �rst criterion is
depicted in Figure 7(a) where n is the outward normal vector of the boundary edge and p is
a vector pointing from the centre of the boundary edge to the node considered. If the product
is greater than or equal to zero, then the node is considered to be within the edge, as shown
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in the following:

(pn)= {p} · {n}= {px py} ·
{
nx

ny

}
=(pxnx + pyny)¿0 (29)

In order to ensure that vector p is not pointing to a node that is very far away from the
boundary edge, the boundary edge will be enclosed within a bounding box. The second
criterion is depicted in Figure 7(b) where the dot product of both p1 · C and p2 · C must be
di�erent in sign. The purpose of this second criterion is to ensure that the nodes tested is
within the boundary edge. Figure 7(c) shows that the sign for these two dot products are
the same, i.e. both dot products are less than zero. If the node being tested ful�ls these
two criteria, then the node is projected downward onto the boundary edge and the projected
lengths between this projected node and the two edge nodes are computed for the transfer
operator algorithms, as illustrated in Figure 7(d).

4.2.3. Mesh-to-mesh transfer operators. Following the approach presented [12] for data trans-
fer within the domain and incorporating the new technique developed here for curved bound-
ary, there are two classes of mesh-to-mesh transfer operators being implemented in the present
study, which are restriction operators and prolongation operators.

4.2.3.1. Flow-�eld-variable transfer operators. The restriction transfer operator, Th+1h , that
transfers the �ow �eld values from the �ne grid to the coarse grid is given as follows:

W1 =
AaWa +AbWb +AcWc

Aa +Ab +Ac
(30)

Lower case letters denote �ne grid nodes and Arabic numbers denote coarse grid nodes for
all the �gures in this section. The �ow �eld value at the coarse node 1, which is contained
in the �ne cell formed by nodes a; b and c, is a weighted average of the values at those nodes

Figure 8. (a) Transfer of �ow �eld values from the �ne mesh to the coarse mesh; and (b) transfer
of variables from �ne nodes to the coarse node at the boundary.
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as shown in Figure 8(a). Aa; Ab, and Ac are the areas of the corresponding triangles opposite
to the nodes.
On the curved boundary, the �ow �eld values are transferred from the �ne nodes of the

edge formed by vertices a and b onto the coarse node 1′. The restriction transfer operator,
Th+1h , that transfers the �ow �eld values from the �ne grid to the coarse grid is based on the
following formula:

W1 =
|1′b|Wa + |1′a|Wb

|ab| (31)

The �ow �eld values at the coarse node 1′, which is projected downward onto the �ne edge
enclosed by nodes a and b, is a weighted average of the values at those nodes as shown in
Figure 8(b). |1′a| and |1′b| are the projected lengths between the �ne nodes and the projected
coarse node. |ab| is the length of the �ne edge.

4.2.3.2. Residual transfer operators. The transfer of residuals from the �ne nodes to the
coarse nodes is based on an area-weighted contribution calculation as depicted in Figure 9(a).
The �nal transferred residual at a coarse grid node will be the summation of the contributions
from all the �ne nodes located within all the coarse cells surrounding this particular coarse
grid node. For the three nodes of a coarse grid cell, the residual contributions they receive
from a single �ne grid node inside the cell are calculated as

R1 =R1 +
A1Ra

A1 + A2 + A3

R2 =R2 +
A2Ra

A1 + A2 + A3

and

R3 =R3 +
A3Ra

A1 + A2 + A3
(32)

Figure 9. (a) Transfer of residuals from the �ne mesh to the coarse mesh; and (b) transfer of residuals
from the �ne node to the coarse nodes at the boundary.
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where A1; A2 and A3 are the areas of the corresponding triangles opposite to the nodes. It is
easy to show that this transfer is conservative in the sense that the total �ne mesh residuals
are equal to the coarse mesh ones.
On a curved boundary the residual contributions from �ne node a′, which is projected onto

a coarse edge enclosed by coarse nodes 1 and 2, are distributed to the coarse nodes 1 and 2
using a length-weighted contribution calculation. The transfer operator, Qh+1h is given as

R1 =R1 +
|2a′|Ra′

|12|

R2 =R2 +
|1a′|Ra′

|12|
(33)

This is shown in Figure 9(b) for a �ne node within a coarse boundary edge. It can be seen that
the �nal residual at the coarse nodes 1 or 2 is actually the summation of all the contributions
from those �ne nodes projected onto the two edges that share the coarse node. This also
ensures the residual transfer is conservative on the boundary.

4.2.3.3. Correction transfer operators. Prolongation operators are used to transfer correc-
tions of the �ow �eld variables from the coarse mesh to the �ne mesh, which is illustrated
in Figure 10. The corrections on a coarse mesh are calculated as follows:

dWh+1 =W+
h+1 −W(0)

h+1 (34)

The corrections are then transferred to the �ne mesh by the prolongation operator, I hh+1

vh= I hh+1dWh+1

According to Figure 10(a), the correction of the �ow �eld variables transferred from coarse
nodes 1, 2 and 3 to �ne node a is a weighted average of the corrections at 1, 2 and 3 and

Figure 10. (a) Transfer of corrections from the coarse mesh to the �ne mesh; and (b) transfer of
corrections from the coarse nodes to the �ne node at the boundary.
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the expression for the transferred correction is

(va)h=
A1(dW1)h+1 + A2(dW2)h+1 + A3(dW3)h+1

A1 + A2 + A3
(35)

where A1, A2 and A3 are the areas of the corresponding triangles opposite to the nodes 1, 2
and 3, respectively.
The corrections of the �ow �eld variables are transferred from the coarse nodes of the

edge formed by vertices 1 and 2 to the �ne node a′ as shown in Figure 10(b). The transfer
operator, I hh+1, that transfers the corrections from the coarse nodes to a �ne one is derived as
follows:

(va′)h=
|2a′|(dW1)h+1 + |1a′|(dW2)h+1

|12| (36)

Thus the correction at the �ne node a′, which is projected downward onto the coarse edge
formed by nodes 1 and 2, is also a weighted average of the values at the two coarse nodes.
|1a′| and |2a′| are the projected lengths between the coarse nodes and the projected �ne node.
|12| is the length of the coarse edge.

5. BOUNDARY AND INITIAL CONDITIONS

At the solid wall, a no-slip condition is imposed for viscous �ow by setting the �ow velocity
equal to that of the body. A uniform velocity pro�le is given as the free stream boundary
condition and the pressure at the free stream is calculated while pressure at the down stream
boundary is �xed at a constant value and the velocity at the down stream boundary is calcu-
lated. The �ow �eld values are set to the free-stream values at the start of the computation.

6. COMPUTATIONAL RESULTS

In this section, the validation of the incompressible multigrid �ow solver is described and
its performance evaluated. The test case is viscous �ow over a circular cylinder at di�erent
Reynolds numbers.

6.1. Low-Reynolds-number steady �ow

The Reynolds number speci�ed in the computations was 41.0, the pseudo-compressibility
coe�cient � was set to 1.0 for fast convergence and the physical time step was set to a large
value. The third-order characteristics-based scheme was used in both single grid and multigrid
computations. A three-level multigrid was used to compute the �ow. There are 12 556 nodes
and 24 763 elements in the �ne grid, 1571 nodes and 3009 elements in the coarse grid, and
212 nodes and 404 elements in the coarsest grid, all of which are shown in Figure 11.
The results obtained from the multigrid solver for both V- and W-cycle are used to

make qualitative comparisons with experimental results and that of single-grid computation.
Figure 12 shows the streamline plots for �ow over a circular cylinder obtained from experi-
mental measurement, single grid, multigrid V- and W-cycle computations.
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Figure 11. The sequence of grids used in the three-level multigrid computations.
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Figure 12. Streamlines plot for �ow over a circular cylinder for: (a) Experimental measurements [22];
numerical computation for (b) single gird; (c) MG, V-cycle; and (d) MG, W-cycle (Re=41:0).

Based on visual comparison with the experimental and single-grid results, the results ob-
tained for both multigrid strategies show a similar trend, where the separation point occurs
at the same location, the separation bubble is of the same size and the reattachment point
is at the same location. Since the main purpose of the multigrid method is to accelerate the
convergence rate, a more realistic way of comparing the results obtained is to make a quanti-
tative comparison between the single-grid and the multigrid computations in term of the order
of magnitude reduction in residuals vs number of time steps and CPU time. This comparison
is given in Figure 13.
The steady �ow calculations with both the single-grid and multigrid were performed on a

DEC AlphaServer 8400 5=440 machine. Figure 13(a) indicates that it takes more time steps
for the single-grid computation to reduce the residuals to 10−4 as compared with three-level
multigrid (MG). The MG solver shows a reduction of 83% in time steps required for MG
compared with the single grid. Figure 13(b) shows a signi�cant saving in the CPU time using
the MG method. From the �gure, it can be seen that it takes about 200 min to compute the
same problem using MG method, as compared to the single grid, which takes about 800 min.
The multigrid solver shows a reduction of 75% in CPU time when the three-level multigrid
V-cycle is used while the three-level W-cycle leads to a 88% reduction in CPU time, compared
with the single grid computation. The CPU time of the W-cycle is found to be less than that
of the V-cycle on three levels of grids since the number of time steps for W-cycle is less
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Figure 13. Convergence history plot for: (a) Residual vs physical time steps;
and (b) residual vs CPU time.
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than that of the V-cycle, which indicates that the W-cycle is more e�cient than the V-cycle
for this particular case.
From the results obtained, it can be concluded that the multigrid method is a faster and more

e�cient technique than the baseline single-grid method for low-Reynolds-number steady �ows.
The W-cycle requires approximately 90% more CPU time than a single-grid cycle, while the
V-cycle requires 75% more CPU time. However, both multigrid strategies provide close to
an order of magnitude increase in convergence rate, thus greatly outweighing their increased
cost per cycle.

6.2. High-Reynolds-number unsteady �ow

The test case considered for high-Reynolds-number unsteady �ow is the viscous �ow over a
circular cylinder at Re=200, which is one of the most thoroughly investigated unsteady �ow.
The parameters and schemes for both the single-grid and multigrid in the computations were
the same as before, except that the number of pseudo sub-iterations and number of multigrid
cycles per step were set di�erently. The non-dimensional physical time step was set to be 0.09
for better temporal resolution. The third-order characteristics-based scheme was also used in
both single-grid and multigrid computations together with the dual-time stepping scheme and
the second-order temporal discretization. The pseudo sub-iterations per time step were set to
200 for single grid, 30 V-cycles per time step and 15 W-cycles per time step. A three-level
multigrid was used to compute the �ow. There are 24 226 nodes and 48 103 elements in �ne
grid, 8646 nodes and 17 102 elements in the coarse grid, and 3139 nodes and 6139 elements
in the coarsest grid. Especially in the �ne grid the wake region is further re�ned in order to
accurately capture the �ne details of the vortex shedding phenomenon (see Figure 14).
The high-Reynolds-number-�ow calculations using both single grid and multigrid were per-

formed on a SGI OCTANE workstation. The �ow was started from stationary conditions
and the simulation was run until periodic shedding of vortices occurred. Figure 15 shows
the computed lift and drag coe�cients on the cylinder vs non-dimensional time with both
single grid and multigrid, respectively. A pronounced asymmetric wake began to appear at

Figure 14. Fine mesh with grid re�nement in the wake region for unsteady �ow calculation.
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Figure 15. Lift and drag coe�cients vs time for �ow over a circular cylinder, Re=200.

non-dimensional time of 20 for both single grid and multigrid. The �ow became completely
periodic at a time of 55 for both methods. Although both methods took the same time to
obtain fully periodic �ow, the number of sub-iterations or multigrid cycles is much less than
that of the single grid. This signi�es that the multigrid method takes shorter time than the
single grid to produce the vortex shedding phenomenon, thus lesser CPU time is needed for
the �ow to become fully periodic. The period of the �ow as shown in the �gure is 5.13.
Figure 16 illustrates a comparison between the CPU time taken for the same non-dimen-

sional time for both the single grid and multigrid methods. From the �gure, it is found that 30
V-cycles and 15 W-cycles took 55 and 53%, respectively, lesser CPU time than the single grid
to compute the same �ow problem. Comparing the CPU time taken for both V- and W-cycle,
it is observed that both of them almost took the same CPU time to reach the periodic=cyclic
stage, even though W-cycle uses lesser number of cycles per time step. This is mainly due
to the additional operations on the coarser grid for W-cycle.
Figure 17 shows the contours of vorticity obtained by the multigrid method, which basically

outlines the von K�arm�an vortex street phenomenon. The �gure shows that the vortices with
opposite signs are shed from upper and lower surfaces alternatively and, thus forming the von
K�arm�an vortex street phenomenon.
Table I tabulates the results for Re=200 from both numerical studies and experimental

measurement. In this table, Cl is the lift coe�cient, Cd is the drag coe�cient, and St the
Strouhal number. The computed coe�cients and Strouhal number from the multigrid solver
are found to produce excellent agreement with those by the single-grid method. In comparison
with other researchers’ results, the value of Cl for the multigrid method obtained produces
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Figure 16. Comparison of CPU time between the single grid and multigrid method.

Figure 17. Vorticity contours plot for multigrid, Re=200.

quite a good agreement with the results by Chan et al. [14] and Belov et al. [10], but deviates
slightly from that of Liu et al. [11]. The average value of 1.31 for Cd obtained is in good
agreement with that in Reference [11] and the experimental results obtained by Wille [23],
but the amplitude deviates slightly by 8× 10−3. The Strouhal number obtained has excellent
agreement with the experimental data obtained by Kovaznay [24] and Roshko [25], and the
numerical results by most of the researchers.
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Table I. Comparison of results for unsteady �ow over a cylinder, Re=200.

Reference Cl Cd St

Present (multigrid) ± 0:64 1:31± 0:041 0.195
Present (single-grid) ± 0:64 1:31± 0:041 0.195
Liu et al. [11] ± 0:69 1:31± 0:049 0.192
Chan et al. [14] ± 0:63 1:48± 0:05 0.183
Belov et al. [10] ± 0:64 1:19± 0:042 0.193
Rogers et al. [13] ± 0:65 1:23± 0:05 0.185
Miyake et al. [10] ± 0:67 1:34± 0:043 0.196
Rosenfeld et al. [27] ± 0:69 1:46± 0:05 0.211
Lecointe et al. [26] ± 0:50 1:58± 0:0035 0.194
Kovaznay (expt.) [24] — — 0.19
Roshko (expt.) [25] — — 0.19
Wille (expt.) [23] — 1.30 —

6.3. E�ect of sub-iterations and multigrid cycles

Three di�erent numbers of sub-iterations per time step were used, i.e. 100, 200 and 300, for
single-grid computation in order to determine the optimum number of sub-iterations necessary
to obtain accurate results. It can be seen from Figure 18(a) that the results obtained with
100 sub-iterations show signi�cant deviations from those obtained using 200 and 300 sub-
iterations, while the curves for 200 and 300 sub-iterations coincide with each other. Thus,
the optimum number of sub-iterations to achieve accurate solution for this �ow problem was
considered to be 200.
The performance of the multigrid code strongly depends on the number of multigrid cycles

necessary to achieve steady state in pseudo-time. Since one pseudo sub-iteration is equivalent
to one multigrid cycle on single grids, computations were performed on the multigrid using
10, 20, 30 and 100 V-cycles per time step, and 10, 15 and 20 W-cycles per time step, in
order to determine the optimum number of cycles necessary to obtain good results. Figures
18(b) and (c) show the. results of di�erent multigrid cycles per time step for V- and W-cycle,
respectively. It was found that the optimum number of multigrid cycles to achieve the same
solution as the single grid was 30 multigrid V-cycles and 15 multigrid W-cycles. Thus, the
optimum number of multigrid cycles to achieve accurate solution for this �ow problem was
30 V-cycles and 15 W-cycles per time step.

7. CONCLUSIONS

An unstructured non-nested multigrid method has been successfully developed and imple-
mented into an existing �nite volume Navier–Stokes solver using higher-order characteristics-
based upwind scheme and dual time stepping for the study of unsteady incompressible �ows.
The computational results obtained agree well with numerical solutions obtained by other re-
searchers as well as experimental measurements. The multigrid method with three levels of
grids results in a 75% reduction in CPU time for the steady �ow and 55% reduction for the
unsteady �ow compared with the single-grid method. The co-relation between the CPU time
required and the non-dimensional time to simulate was obtained. The V-cycle is found to be
more e�cient than the W-cycle in multigrid computation of steady, but their e�ciency seems
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Figure 18. E�ect of varying the number of sub-iterations per time step: Cl vs time with: (a) Single-grid;
(b) MG V-cycle; and (c) MG W-cycle.
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to be almost the same in unsteady �ow simulation if optimum numbers of sub-iterations per
time step are found. The e�ects of sub-iteration on numerical solutions were studied and
optimum numbers of sub-iterations for di�erent multigrid as well single-grid iterations were
obtained.

NOMENCLATURE

Cl lift coe�cient
Cd drag coe�cient
CFL Courant–Friedrichs–Lewy number
Fc convective �ux vectors
Fv viscous �ux vectors
I hh+1 prolongation operator from the coarse grid h+ 1 to the �ne grid h
MG multigrid
n unit normal vector
Ph+1 forcing function in the time stepping scheme for the multigrid method
Qh+1h residual transfer operator from �ne grid h to the coarse grid h+ 1
Re Reynolds number
R(Wp) residual
R̃(wn+1p ) modi�ed residual in implicit time stepping
St Strouhal number
t time
�t real time step
�� pseudo-time step
Th+1h solution transfer operator from �ne grid h to the coarse grid h+ 1
W vector of conserved �ow variables
Wh solution from the �ne grid
W+
h updated variables of the solution on the �ne grid h

W(0)
h+1 initial values transferred from the �ne grid

W+
h+1 newly computed value on the coarse grid h+ 1

dWh+1 correction from coarse grid h+ 1

Greek symbols

� pseudo-time
� stage coe�cients for Runge–Kutta time integration
� smoothing coe�cient
� arti�cial compressibility parameter
� weight used in MUSCL interpolation
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